二等辺三角形の合同証明 基本2

学習日;

/ 点

()をうめなさい。

△ABD と △ACE において

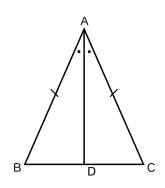
仮定より、
$$AB = ($$
) $\cdot \cdot \cdot \cdot$ ① $BD = ($) $\cdot \cdot \cdot \cdot$ ②

二等辺三角形の底角は等しいので

 $\triangle ABD \equiv \triangle ACE$

△ABD≡△ACE 合同な図形の対応する辺は等しいので AD=AE

2 右の図のように、AB=AC の二等辺三角形 ABC がある。 頂点 B、C からそれぞれ辺 ACAC、AB に垂線 BD、CE をひくとき、BD=CE となることを証明しなさい。



解答

I △ABD と △ACE において

$$BD = (CE) \cdot \cdot \cdot 2$$

二等辺三角形の底角は等しいので

$$\angle ABD = (\angle ACE) \cdot \cdot \cdot 3$$

 $\triangle ABD \equiv \triangle ACE$

△ABD≡△ACE 合同な図形の対応する辺は等しいので AD=AE

2

△ABD と △ACD において

仮定より、AB = AC ······①

AD は ∠BAC の二等分線なので

$$\angle BAD = \angle CAD \dots (2)$$

共通な辺なので AD = AD ······ ③

①、②、③より

2組の辺とその間の角がそれぞれ等しいので

 $\triangle ABD \equiv \triangle ACD$

合同な図形の対応する角は等しいので

 $\angle ADB = \angle ADC$

また、 $\angle ADB + \angle ADC = 180^{\circ}$ なので $\angle ADB = 90^{\circ}$

よって、AD 上 BC である。